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Massimiliano Mazzanti & Antonio Musolesi 

 

Abstract 

Innovation is a primary engine of sustainable growth. This paper provides new semiparametric econometric policy 

evaluation methods and estimates a green knowledge production function for a large, 30-year panel dataset of high-

income countries. Because of the high degree of uncertainty surrounding the data-generating process and the likely 

presence of nonlinearities and latent common factors, the paper considers semiparametric panel specifications that extend 

the parametric multifactor error model and the random trend model. It also adopts a recently proposed information 

criterion for smooth model selection to compare these semiparametric models and their parametric counterparts. The 

results indicate that (1) the semiparametric additive specification with individual time trends is the preferred model, (2) 

threshold effects and nonlinearities are relevant features of the data that are obscured in parametric specifications, and (3) 

the effect of environmental policy is significant and clearly heterogeneous when modeled as a nonparametric function of 

certain knowledge inputs. The evidence shows a relevant nonlinear policy inducement effect occurring through R&D 

investments. 

Keywords: Innovation, knowledge, environmental policy, policy assessment, policy heterogeneity, large panels, cross-

sectional dependence, factor models, random trend model, spline functions, model selection. 

 

 

 



 
 

1. Introduction 

Economic and environmental sustainability is largely driven by technological and policy patterns (EEA, 2020). 

The achievement of a decarbonized, resource- and energy-efficient economy strictly depends on the generation 

and global diffusion of technological innovations (UNIDO, 2016, 2018). While technological progress has 

mostly been incremental over time, in some historical moments, technological improvements have been 

revolutionary, transforming the technological and skill structure of economies (EEA, 2014). The major 

technological drivers of this age and the past three decades are the intensification of information and 

communications technologies, the rise of the Internet of Things, and the development of automation and 

robotics. The techno-organizational development of the green economy can be seen as another innovative step 

in ‘shifting outward the production possibilities frontier for some generalised aggregate of potential human 

wants’ (Griliches, 1990, p.1669), where both smooth changes and discontinuities are present and where 

market- and policy-oriented explanations of the innovative process are necessary. Indeed, the green economy 

trajectory is characterized as a new sociotechnical paradigm with some incremental patterns and some strong 

discontinuities that depend on policy developments since the 1970s-1990s, when milestone conventions were 

inaugurated and the first policies were established (e.g., the US Clean Air Acts, the 1987 UN Convention on 

Sustainable Development, the 1992 Rio Convention, etc.). Environmental policies, which have increased in 

stringency over time (D’Albrizio et al. 2017), have evolved through a different series of steps depending on 

the market and political cycle. Environmental policy-induced technological progress (Milliman and Prince, 

1989) is referenced in the history of environmental policy and international agreements. Starting with the 

Kyoto Protocol milestone, which refers only once to ‘research on, and promotion, development and increased 

use of, new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and 

innovative environmentally sound technologies’, these agreements created expectations of more stringent 

targets favoring invention and innovation and, through the Clean Development and Joint Implementation 

Flexible Mechanisms, generated a market for international exchanges of technologies and related spillovers 

(Johnstone et al. 2010; Dechelezpretre et al. 2011). Within this overall context, the role of green technologies 

aimed at advancing the technology and sustainability transition needs to be investigated from a medium-long 

run perspective in connection with the evolution of policy. 

With the increasing process of globalization, global factors, in addition to country-specific policies, may 

produce significant and possibly heterogeneous effects on countries’ green innovation activities. For instance, 

crises of various kinds may greatly affect technological development, and economic crises, specifically, may 

produce market destruction and creation effects. Within the specific realm of the green economy, a milestone 

global event was COP21, held in Paris in 2015, which emphasized the role of innovation, with a focus on 

radical technological solutions for clean energy and the expansion of R&D expenditures aimed at boosting 

green innovations. In December 2019, the EU launched the European Green Deal, a set of ‘measures 

accompanied with an initial roadmap of key policies [that] range from ambitiously cutting emissions, to 

investing in cutting-edge research and innovation, to preserving Europe’s natural environment. Supported by 

investments in green technologies, sustainable solutions and new businesses, the Green Deal can be a new EU 

growth strategy’. These global events yield heterogeneous innovation responses across countries. 

On the basis of the aforementioned general framework, econometric models should represent in a meaningful 

and flexible way the complexity of green knowledge generation. Nonlinear dynamics, global factors, and 

environmental policies, among other things, are all cornerstones for a full understanding of the process of green 

knowledge generation. More specifically, it is worth studying whether and how innovation inputs produce 

nonlinear effects on green inventions, whether and how unobserved factors additionally affect the way 

knowledge is produced, and in this framework, whether and how environmental policy affects the creation of 

new knowledge. 

Within this framework, this paper examines a model of green knowledge production functions (GKPFs; see, 

e.g., Charlot et al, 2015) to address the possible functional form bias and correlated unobservable factor bias 

that may arise with the adoption of standard parametric fixed effects approaches. To do so, the paper considers 

semiparametric panel specifications, which are rarely applied to address environmental and development 

issues (Millimet et al. 2003; Mazzanti and Musolesi, 2014), with interactive fixed effects. In particular, it 



 
 

extends the parametric random trend model (Heckman and Hotz, 1989) and the common correlated effects 

approach (Pesaran, 2006), which have also been shown to be useful for policy evaluation (Fujiki and Hsiao, 

2015; Wooldridge, 2005). 

A specific focus of this paper is to assess the effect of environmental policy on green inventions. In so doing, 

while a common practice in the policy evaluation literature consists of focusing attention on the mean effect 

or imposing a homogeneous effect across units, as depicted by Cardot and Musolesi (2020), we also consider 

a model in which the effect of the policy is expanded as a nonparametric function of some key covariates 

(innovation inputs) to highlight possible heterogeneous policy effects, which are missed when focusing on 

mean effects. In other words, we allow for a nonparametric interaction between the discrete policy and the 

knowledge inputs. The rationale behind such a modelization lies in the presence of absorptive capacity and a 

possible non neutral effect of environmental policy. Indeed, we could expect that environmental policy is 

transmitted to technological performance with a significance and strength that depends on country-specific 

investments in knowledge-driving factors. 

The model also allows for spillover effects, consistent with the Griliches legacy (Griliches, 1992), which 

emphasizes the role of the magnitude of R&D spillovers, and with a relevant corpus of literature on 

international R&D spillovers (Ertur and Musolesi, 2017) and on the KPF, estimated at different levels of 

aggregation (Charlot et al, 2015). 

The model also allows for cross-sectional dependence, which is introduced as a result of a finite number of 

unobservable common factors that may have different effects on knowledge creation across countries. 

Finally, due to the high degree of uncertainty surrounding the true data-generating process (DGP) and the bias-

efficiency trade-off when comparing parsimonious to complex models (Almeida et al. 2018; Ma et al., 2015), 

this paper adopts a recently proposed information criterion for smooth model selection (Wood et al, 2016) to 

compare some alternative semiparametric models with more common parametric specifications. 

In summary, the two main research investigations are: 

• Assessing the functional form of green knowledge generation by focusing attention on model 

uncertainty, nonlinearities and unobserved common factors. 

• Analyzing heterogeneous policy effects behind the GKPF. 

Regarding environmental policies, we exploit official OECD sources. The policy dataset, with indicators 

constructed on the basis of raw OECD data, is longer in the time dimension than the OECD EPS policy 

indicator (Albrizio et al. 2017), which does not cover the 1980s. Although energy prices might be a sound 

proxy for environmental and energy policies (Sato et al. 2015, Popp, 2002), the use of environmental policy 

categories that capture how policy intensity has evolved over time allows us to assess the threshold effects that 

strongly characterize the dynamic efficiency effects of policies. Energy prices, as a measure of policy, also 

capture market distortions related to the energy market and endowments of fossil fuels. It is often difficult to 

find the desired policy indicator due to data availability. For example, Acemoglu et al. (2016) use fuel prices 

(including energy taxes) to mimic and test the innovation inducement effect of a carbon tax. 

The paper is organized as follows. Section 2 summarizes some related literature and discusses some stylized 

facts on green inventions and policies. Section 3 presents the overall empirical setting of reference, with 

emphasis on model selection and the features of semiparametric models. Section 4 comments on the main 

results of the estimation. Section 5 extends the model by allowing for heterogeneous policy effects within a 

nonparametric and flexible approach. Section 6 concludes and provides suggestions for further research. 

 

 

 

 



 
 

2. Related literature 

The introduction highlighted that the macroeconomic evidence on the GKPF deserves further and specific 

analysis. This paper aims to provide new knowledge by conducting an econometric analysis that is grounded 

in but tries to advance seminal works on induced innovation effects in the energy-environmental framework 

(Popp, 2002). It complements recent papers that examine ‘directed technological change’ by observing clean 

technologies and policies with a focus on micro- and sector-based evidence. Among other seminal papers, the 

study by Acemoglu et al. (2016) analyzes the transition to a decarbonized economy through technology and 

estimates the model by using firm-level US energy sector data; the focus of the authors is on the role of carbon 

taxes and subsidies to stimulate a transition. Aghion et al. (2016) complement that analysis and provide 

evidence on the automotive industry sector, finding signs of path dependency in clean technological 

innovations but also significant effects of a fuel tax, introduced as a proxy for (nonexistent) carbon taxes. Other 

recent works examine specific policy realms, such as EU emission trading (Martin et al., 2014a, Calel and 

Dechelezpretre, 2016) and the effects of a carbon tax on manufacturing sector innovation (Martin et al., 2014b), 

and specific environmental realms, such as renewable energy sectors (Nesta et al. 2014, Noailly and Smeets, 

2015). The rationale behind those types of studies is to deeply analyze the specific effects of policy on 

diversified clean technologies. 

The paper takes a broader macroeconomic and longer-run perspective on the technological dynamics of the 

green economy. It tries to add knowledge through the implementation of econometric advancements in the 

framework of green knowledge production functions (GKPFs) that use patents as the best proxy of innovation 

at the macroeconomic level (Griliches, 1990). Popp (2019), who conducts a critical survey of the literature on 

environmental policy and innovation, has recently noted that ‘patent counts not only serve as a measure of 

innovative output but are indicative of the level of innovative activity itself’. The present work focuses on a 

relevant set of high-income countries due to our interest in examining green inventions and environmental 

policy dynamics over a 30-year period. Although the role of emerging and developing countries in producing 

green knowledge has increased over the past decades (Dechelezpretre et al. 2011) and technology transfers are 

crucial to achieving global sustainability (Popp, 2012), most innovation is still concentrated in a few more 

advanced countries that currently present a consolidated history regarding the evolution of environmental 

policy stringency. 

 

3 Data and stylized facts 

3.1 The Data 

The dataset is a balanced panel dataset covering the period 1982-2012 for 19 OECD countries. As far as the 

dependent variable is concerned, data on green patents (GK) are collected from the OECD.Stat databases. We 

consider patents that fall under the ‘selected environment-related technologies’ category as defined by the 

OECD (IPC: ENV_TECH) and that were granted by the USPTO (United States Patent & Trademark Office), 

and we calculate the number of patents country-wise according to the inventor or inventors’ country or 

countries of residence. Patents of an agent belonging to country i but submitted to country j are accounted for 

as i-related patents. For each patent, we have information on the patent family, year of filing and the 

geographical location of the inventors 1.  

As far as explanatory variables are concerned, we use the knowledge input set following Charlot et al. (2015). 

Research and development (RD) and human capital (HK) are both included as input factors. Specifically, we 

use gross domestic expenditure on research and development (GERD) flow values, collected from the 

OECD.Stats database, using total data as a source of funds. The data are in 2010 dollars – constant prices and 

PP. Missing values are filled in using a similar method to that of Coe et al. (2009), and then we calculate GERD 

 
1 Fractional counts are used to avoid double counting of the same inventions across different geographical areas. This 

means that if a patent family is developed by more than one inventor, we weight that patent family according to the 

geographical areas of the inventors. The patent family also captures the ‘quality’ of patents at the macroeconomic level. 



 
 

stock values using the perpetual inventory method as in Coe and Helpman (1995), assuming the depreciation 

rate to be 0.05. The HK stock is collected from the Penn World Table version 9.0 (Feenstra et al., 2015). 

To account for knowledge spillovers (see also Verdolini and Galeotti, 2011), we consider foreign RD and 

foreign HK (WRD and WHK, respectively). We use geographic proximity as a channel of technology diffusion 

because of its consistency with theory (Keller, 2002) and for exogeneity reasons, as it may be considered an 

exogenous proxy for some endogenous measures of socioeconomic, institutional, cultural or linguistic 

similarities that might enhance the diffusion of technology. Following Keller (2002) and Ertur and Musolesi 

(2017), we use an exponential decay function. 

Policy indexes are derived from OECD raw sources and used as key policy indicators (Nesta et al. 2014), 

because as also stressed by Johnstone et al. (2010), “due to the heterogeneous nature of the data, it is not 

possible to construct continuous variables in which the level of ‘stringency’ (or ‘support’) is commensurable 

across policy types and countries. As such, for most of the policy types, dummy variables are introduced to 

capture the effect of the implementation of different policies”. 

Specifically, the base information refers to six policy categories over a broad spectrum that incorporates the 

multidimensionality of policy efforts (OECD, 2016): deposit refund schemes, fees, tax rates of 

environmentally related taxes, tradable permits, voluntary approaches, and environmentally motivated 

subsidies (https://pinedatabase.oecd.org/). On the basis of these 6 categories, which are observed year by year 

and assume values of 0 or 1, a policy indicator assumes a value of 1 in the year of the introduction of a policy 

from one of the six categories. If several policies are introduced in a given year in the country, the indicator 

increases by one for each additional policy up to 6. The EP treatment variable is derived from the 

aforementioned indicator, potentially ranging from 0 to 6, and takes the value 1 if at least one policy is 

introduced. Finally, we note that while information is available for three domains: air pollution, climate change, 

and energy efficiency, we focus in this paper on the domain of air pollution regulations (Berman and Bui, 

2001), given the relatively longer history of air pollution policies over the considered period. 

To address heterogeneous effects within a similar framework to that of Cardot and Musolesi (2020) but with 

the limitation in terms of sample size of using macroeconomic data, we decide to rely on a binary (0/1) 

treatment variable rather than using a categorical variable with multiple categories. 

 

3.2 Stylized facts about green inventions and environmental policies 

As the previous paragraphs noted, nonlinear dynamics, cross-country heterogeneity and common latent factors 

characterize real-world innovation phenomena. The section outlines some time patterns and heterogeneous 

trends. 

Figure 1 shows that the green patent pattern displays some nonlinear dynamics for all countries, which 

experience a rather common nonlinear, exponential-type evolution of green patent creation, albeit with 

different intensities. Indeed, while for most of the countries, green patents follow a smooth exponential pattern, 

for others (Australia, Canada, Denmark, Finland and Germany, to show diversified examples among others), 

they evolve on a rather linear trend, and finally, for a few other countries (South Korea, Portugal, Greece, 

Ireland, and Sweden2), they show a very deep increase after a period of stagnation. The observed patterns are 

coherent with a relatively earlier adoption of policies in more mature economies, which has produced a 

smoother evolution than that of some other countries that had lower income at the beginning of the 

environmental policy dynamics. The latter countries have substantially closed gaps in terms of both GDP and 

policy commitments as well. This is noteworthy since it shows that environmental policies with an 

 
2 This example shows that country heterogeneity is relevant even within similar ‘clubs’ of countries (Scandinavia as well 

as the EU economy or Anglo-Saxon countries). Sweden, one of the first countries to address climate change and 

sustainability through policies, shows an increasing but highly nonlinear invention pattern. Fankhauser et al. (2013) 

present sector-based evidence on green patenting intensity in manufacturing, showing the top-placed countries (Germany, 

Japan) and significant heterogeneity among a set of high-income countries. 



 
 

international dimension in the realms of pollution and emissions can act as an additional lever of convergence 

through innovations. 

As far as the R&D stock is concerned, nonlinear increasing trends are also a feature of the data (Figure 2). It 

is worth mentioning that the achievement of an R&D/GDP ratio of 3% is one of the five headline targets of 

the Europe 2020 strategy for smart, sustainable, inclusive growth3. The EEA (2020) notes, “In 2017, [the] 

gross domestic expenditure on R&D of all sectors in EU-28 countries has been EUR 317 billion, corresponding 

to 2.06 % of GDP, a figure higher than the 1.77 % of 2000 but well below the 3 % target of Europe 2020”. 

However, within the EU and worldwide, as a consequence of extremely high cross-country heterogeneity in 

terms of R&D investments, the increase in the R&D stock from the beginning to the end of the period varies 

greatly across countries. While in Italy, it has grown by approximately 20%, in South Korea, it has increased 

by more than 200%. 

Finally, when we look at the EP (air pollution policies) variable, overall, 45% of the observations are treated 

units. While the ex ante logic of building this kind of policy variable is explained in the previous section, ex 

post, having two homogeneous groups in terms of size can be useful for estimating the model. Moreover, EP 

shows relevant variations in both the time and the cross-sectional dimensions (Figures 3 and 4). Indeed, while 

very few observations were treated at the beginning of the period (0% in 1982, 5% in 1983), almost 80% had 

implemented environmental policies by 2012. The OECD (2016) observes that ‘environmental policy 

stringency has been increasing in all OECD countries and BRIICS over the past two decades’ and ‘policies, as 

measured by the EPS indicator, are most stringent in Nordic countries, the Netherlands, Finland and Germany. 

Among OECD countries, they are least stringent in Greece, Portugal, Ireland and Hungary. Most of the other 

countries are close to the OECD average’ (p.6). We further note, following Botta and Kozluk (2014), that the 

1995-2012 increase is larger for the higher-income OECD counties (Finland, the Netherlands, Denmark) than 

for the lower-income OECD countries (Greece, Portugal, Ireland). Analogies with the aforementioned 

invention patterns are highlighted. The heterogeneity goes further anyway: due to diversified starting points 

and the 1995-2014 increases, some more mature countries in the EU and the Anglo-Saxon world, such as 

France, Italy, Australia, the UK, and the USA, are below the OECD average, while some initial laggards, such 

as Spain, Slovakia, Poland, and Korea, have moved up higher than the average (Botta and Kozluk, 2014). 

Moreover, in view of estimating the model, we globally do not observe serious problems in terms of a lack of 

overlap. Observations that are out of support may affect the performance of regression approaches, mainly by 

affecting their precision (Lechner and Strittmatter, 2019). However, using flexible regression models, which 

are able to fit the data locally, is an effective way to address such a potential issue. Nonlinearities, latent 

common factors and possibly heterogeneous policy effects are all handled in the econometric framework 

presented in the next section. 

 

 

 

  

 
3 Education and (clean) R&D investments are among the five policy items that can support the achievement of economic 

and climate goals, according to Hepburn et al. (2020), who also stress that green public infrastructure investments can 

drive down the cost of clean energy and start the ‘green innovation machine’. 



 
 

Figure 1 – Trends in green patenting per million inhabitants over time (for countries in the top quintile) 
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Figure 2 – Trends in R&D stocks (public and private R&D)
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Figures 3-4 – Trends in air pollution policy indicator (binary, constructed from OECD raw data) 
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3. Semiparametric modeling of green knowledge production and environmental policies 

The modeling framework is aimed at enhancing the understanding of long-run knowledge generation and 

setting new policy evaluation tools. As mentioned in the introduction, modeling the complexity of the 

innovation process is an important challenge of econometric analyses, given the likely presence of complex 

nonlinear relations, latent common factors and heterogeneous relations (Charlot et al, 2015). Relaxing 

simplistic assumptions regarding how innovation is generated and analyzing the link between policies and 

green innovations may produce additional insights for research in this field. To model the GKPF, we propose 

the following rather general semiparametric panel data model: 

 

( ), , , ,it i it it it it it it

it i t it

GK c EP g RD HK WRD WHK

f

 

  

= + + +

= +
                         (1) 

where itGK measures green patenting activities, g(.) is a real unknown function, and itRD  and itHK  refer to 

the two main factors behind inventions, namely, R&D and human capital stocks4. itWRD  and itWHK  are 

introduced to take into account spillover effects that may arise from both R&D and human capital from foreign 

countries. Finally, itEP is the binary indicator of policy intensity described in the previous section. 

Note that the errors it  have a multifactor structure (Pesaran, 2006 and Su and Jin, 2012), with tf  being a 

vector of unobservable common factors with heterogeneous factor loadings i  , and it  is the idiosyncratic 

error term. It is relevant to observe that tf  is modeled to be correlated with the explanatory variables (Pesaran, 

2006; Ertur and Musolesi, 2017, Su and Jin, 2012). 

Model (1) extends Charlot et al. (2015) since as also stressed by Heckman and Hotz (1989), the random trend 

specification that Charlot et al. (2015) adopt can be viewed as a special case of the multifactor error model (1). 

Obviously, by imposing homogeneous loading parameters, a common two-way fixed effect is also obtained. 

To estimate model (1), we adopt the approach proposed by Su and Jin (2012) and use spline functions to model 

the nonparametric part of the model, g(.). In particular, we adopt penalized regression splines because they 

have been proven to perform well empirically, and asymptotic results have recently been proven (for a more 

detailed discussion, see, e.g., Gioldasis et al, 2020). 

The adopted econometric model specifically addresses the following methodological issues. 

Functional form and nonlinearities. Although a log-log specification is customary in the literature on the KPF, 

the precise functional form cannot be straightforwardly defined on a theoretical basis, and alternative 

functional forms cannot be excluded a priori. This relevant issue was recognized, even at the firm level, in an 

early work by Griliches (1990, p. 303): "Given the nonlinearity and the noisiness in this relation, the finding 

of ‘diminishing returns’ is quite sensitive to functional form, weighting schemes, and the particular point at 

which the elasticity is evaluated". As highlighted by Varga (2000), it can be expected, for instance, that a 

critical mass of R&D or human capital is necessary to make such inputs truly effective. These considerations 

suggest that estimating a nonparametric relation between knowledge and its main inputs could be important to 

avoid a functional form bias (see, e.g., Charlot et al., 2015). 

Latent common factors and cross-sectional dependence. The existing literature on the KPF has addressed the 

issues described above by exploiting the panel structure of the data. Generally, a two-way (individual and 

 
4 It is here worth citing Griliches (1990, p.1674), who stresses that ‘patents tend to be taken out relatively early in the life 

of a research project’. The empirical literature has noted that in the green realm, patenting activities arose quite early in 

the first environmental policy phases of the 1980s and 1990s (Jaffe et al. 1995; Jaffe and Palmer, 1997). 



 
 

common time) fixed effects approach has been adopted, while Charlot et al. (2015) use a random trend 

specification that introduces an interaction between individual fixed effects and a linear time trend. Both 

approaches are special cases of the factor model considered by Pesaran (2006). The motivation behind the use 

of the factor model lies in its ability to allow for cross-sectional dependence. Cross-sectional dependence is 

indeed introduced as a result of a finite number of unobservable common factors that may have different effects 

on knowledge creation across countries. Such factors might include, for instance, aggregate technological 

shocks, global crises, and global policies intended to raise the level of technology. The CCE approach by 

Pesaran (2006) explicitly allows for such cross-sectional dependence, which may pose inconsistency problems 

for standard estimation methods, and remains valid in a variety of situations that are likely to appear, such as 

the simultaneous presence of multifactor and spatial error structures and the existence of nonstationarity 

(Pesaran and Tosetti, 2011; Kapetanios et al., 2011). 

Endogeneity of the environmental policy variable and of the knowledge inputs. A relevant issue to handle is 

the endogeneity of knowledge inputs and of the policy variable. Charlot et al. (2015) and Cole et al. (2017) 

highlight the importance of accounting for time-varying correlated heterogeneity when estimating a KPF and 

when assessing the effect of environmental policies, respectively. For instance, Cole et al. (2017, p.475), while 

discussing the standard ways of addressing the endogeneity of the policy variable, note that “[using] FE to 

control for unobserved heterogeneity that might be correlated with both regulatory stringency and FDI. 

However, FE can only control the unobserved heterogeneity that is fixed over time”. In this respect, it is 

important to note that adopting the random trend model or the factor model allows us to control for time-

varying correlated heterogeneity (see also Wooldridge, 2005); thus, this is a powerful means of addressing the 

endogeneity problem for both the continuous inputs and the binary policy variable. Moreover, considering a 

flexible form for knowledge inputs is also very useful for credible identification of the policy effect (Abadie, 

2005, Lechner, 2011, 2015, Cardot and Musolesi, 2020). 

 

Model uncertainty. We recognize the existence of high uncertainty surrounding the true DGP. In general, there 

is a bias-efficiency trade-off when comparing parsimonious to complex models (Ma et al., 2015). Considering 

flexible models is appealing but may come at the price of unfeasible or extremely inefficient estimates (Baltagi 

et al., 2002, 2003). For these reasons, we perform model selection by comparing some alternative models. 

 

4. Main results 

4.1 Model selection: parametric and semiparametric specifications 

Model selection is performed by applying recent advances in the topics; specifically, we consider an 

information criterion recently developed within the framework of smooth regression models (Wood et al., 

2016). We compare alternative specifications for g(.) and for the unobserved time effects. For the latter, we 

consider three alternative specifications: common factors with heterogeneous loadings (the CCE approach by 

Pesaran, as extended by Su and Jin, 2012), it i t itf  = + ; the random trend model including individual time 

trends (Wooldridge, 2005), it i itt  = + ; and time dummies (two-way fixed effects), it t it  = + . 

For the function g(.), we consider both parametric linear models and semiparametric additive models that avoid 

the curse-of-dimensionality problem of a fully nonparametric model, which was computationally unfeasible 

in our framework. In total, we consider six alternative models. 

The results in Table 1 indicate that the preferred model (Bayesian information criterion) presents additive 

smooth terms for g(.) and individual time trends (random trend) to represent the latent common factors. In the 

following, the econometric model that we adopt can be written as: 

 



 
 

( ) ( ) ( ) ( )1 2 3 4it i it it it it it i itGK c EP g RD g HK g WRD g WHK t  = + + + + + + +             (2) 

 

Overall, the results provide interesting insights into model selection. It is indeed found that the random trend 

specification always performs better than the two-way fixed effects model and the multifactor error model 

(CCE). This is an extremely interesting result suggesting the use of an intermediate level of heterogeneity for 

the modeling of unobserved common factors; the random trend model is more efficient but less flexible than 

the CCE specification. Note indeed that the nuisance parameters to be estimated in the CCE are N*(K+1), with 

K being the number of explanatory variables, while the random trend requires the estimation of N nuisance 

parameters, one for each individual trend. Another relevant result is that the two-way fixed effects model is 

always dominated by the other two and performs the worst: imposing homogeneous effects of the time 

components appears to be, ex post, an excessively restrictive assumption. Finally, note that in two cases out of 

the three (the random trend and the two-way model), the specification with additive smooth terms outperforms 

the parametric linear model. 

Two main remarks are in order. First, note that the preferred model allows for an intermediate-high level of 

flexibility since it allows for smooth additive effects of the regressors along with individual trends. Both 

excessively simple models, such as the parametric or the two-way fixed effects models, and excessively 

complex specifications, such as the multifactor error, are thus rejected (see also Baltagi et al., 2002, 2003). 

Second, it is worth noting that allowing for smooth additive terms and individual trends provides a more 

credible identification of the policy effect than that provided by parametric models and/or a standard two-way 

model (for a more detailed discussion, see, e.g., Cardot and Musolesi, 2020; Wooldridge, 2005; Lechner, 2010, 

2015). 

Specifications BIC 

1. Semiparametric additive smooth functions, individual time effects (random trend) 218.1777 

2. Parametric, individual time effects (random trend) 235.3614 

3. Parametric, multifactor error structure (CCE) 246.0169 

4. Semiparametric additive smooth function, multifactor error structure (CCE) 282.6753 

5. Semiparametric additive smooth function, two-way fixed effects 476.0993 

6. Parametric, two-way fixed effects 604.5955 

Table 1 – Model selection outcomes 

 

4.2 Estimation results 

4.2.1 Semiparametric estimation of the GKPF: nonlinearities, threshold effects and average policy effect 

In this section, we focus attention on the results of estimating model (1). We mainly focus our attention on the 

functional relation between green patents and their main inputs, eventually highlighting possible nonlinearities 

and threshold effects. 

The results concerning the additive nonparametric components of model (1) are presented in Figure 5. The 

three graphs depict the estimated univariate smooth functions for the inputs that are found to be statistically 

significant. We also computed the p-values for the smooth terms using Wald test statistics as suggested by 

Wood (2012). These are p-values associated with the Wald test of the hypothesis that the whole function equals 



 
 

zero. Low p-values indicate a low likelihood that the splines of the function are jointly zero. Additionally, note 

that smooths are subject to sum-to-zero identifiability constraints as detailed in Cardot and Musolesi (2020). 

The estimated smooths (except WHK) appear to be highly significant, showing extremely low p-values on the 

Wald tests. Moreover, using an approximate ANOVA test procedure (Wood, 2017), linearity is always rejected 

for all explanatory variables except WHK. WHK instead presents a positive linear effect, which is not 

statistically significant (p-value=0.27). The non-significance of WHK is consistent with the literature focusing 

on international technology diffusion, which stresses the role of R&D spillovers (Ertur and Musolesi, 2017). 

Additionally, note that the response and the explanatory variables are in logarithmic values: this facilitates the 

economic interpretation, as the slope of the estimated smooth functions represents an estimated elasticity. This 

also makes the Gaussian assumption more plausible and allows for a straightforward comparison with 

parametric models, expressed in log-log form. 

Figure 5 shows that as expected, the estimated smooth functions are highly nonlinear, with relevant threshold 

effects. Indeed, for all three significant variables (RD, HK, and WRD), a critical mass is necessary to ensure 

an effective impact on green patenting. This result is consistent with some related literature focusing on 

nongreen knowledge creation and/or different levels of aggregation (Varga, 2000, Charlot, 2015).5 Evidence 

for RD and HK attests that policy targets on these inputs are justified to support innovation and growth, as the 

number of countries making substantial knowledge investments (e.g., 3% of GDP or higher) enhances the 

spillover effect. Countries that have structurally invested in R&D over the last decades, such as Japan, the 

USA, Germany, South Korea, and China, as well as Denmark and Sweden on a relatively smaller scale, present 

large shares of top inventions in climate-related technologies. The ascending phase of the climate change patent 

trend was around the mid-1990s, influenced by new policy expectations (Dechelezpretre et al. 2009). 

Nevertheless, investing in R&D matters if substantial thresholds are structurally surpassed. It is worth noting 

that the R&D/human capital and policy factors could be entangled. The fact that the mid-1990s witnessed a 

turning point in R&D-intense countries that proactively responded to new policies is a signal of an 

interconnection: to induce inventions, policies need a preexistent, dense R&D environment. Section 4.3 below 

focuses on the analysis of interactive policy effects to shed further light. Spillovers are the other key component 

of technological inducement. In the specific framework of green energy knowledge development, Verdolini 

and Galeotti’s (2011) panel data analysis demonstrates that ‘higher geographical and technological distances 

are associated with lower probabilities of knowledge flow’ and ‘spillovers between countries have a significant 

positive impact on further innovation in energy-efficient and environmentally friendly technologies’. 

As for the effect of the policy, which is assumed here to be constant both across countries and over time, the 

parameter  , which also identifies the average treatment effect, is estimated to be 0.009 and is almost 

significant at the 5% level (p-value=0.055). This result thus indicates a positive effect, albeit small in 

magnitude6. The estimated policy effect, which is a homogeneous shift in the regression function, represents 

an increase of approximately 2% when we consider the median value of the dependent variable. What we do 

substantially find through this analysis is that over the time span that embraces the second US Clean Air Act, 

the Rio Convention, the Kyoto Protocol and the EU 2020 climate and energy package, all key examples of 

policy steps of international relevance, a high level of policy intensity brought about specific effects on green 

inventions. This outcome enriches the macroeconomic evidence on policy effectiveness that, among others, 

Johnstone et al. (2010, 2012) provide, first over a similarly long time span (1978-2003), but focusing on 

renewable energy policies, and then over a more restricted time span and using opinion survey-based policy 

indicators. McKitrick (2007), who takes a long-run perspective and specifically focuses on air pollution trends, 

 
5  It is worth noting that the domain of the variables has been appropriately reduced to the regions where the effects are 

significant. Indeed, in the regions of the domain of the variables where data are sparse, large confidence interval bands 

are present, since it is not possible to precisely estimate the functions of interest. These regions in which the plots cannot 

be easily interpreted correspond to low levels of HK and to very low levels of RD and WRD. 
6 Jaffe and Palmer (2001) find little evidence of effects on innovative outputs using regulation compliance costs as a proxy 

for policies in a panel of US manufacturing industries. Brunnermier and Cohen (2003) find mixed evidence on the effects 

of environmental regulations on environmental innovations proxied by patents for a panel of US industries.  

 



 
 

finds that more than oil price effects, the 1970 Clean Air Act, a milestone policy to abate air pollution, was a 

relevant structural factor that induced accelerated abatement technologies. 

In summary, the estimation of a semiparametric random trend model indicates that the long-run evolution of 

green inventions was indeed affected by environmental policy and mostly by the continuous variables R&D, 

human capital and foreign R&D, which show significant nonlinear monotonic patterns and relevant threshold 

effects. Only foreign human capital has, at least in the present time span, no influence on green inventions. 

 

4.2.2 A comparison with a misspecified parametric model 

It is interesting to compare these results with those that we would have obtained by erroneously imposing a 

parametric specification. This may provide relevant insights because, as stressed, for instance, by Lechner 

(2011), the size of the bias of misspecified parametric models can be assessed only through comparison. 

Specifically, when we estimate a traditional parametric random trend model, i) the policy effect decreases 

substantially and becomes negative, with ˆ 0,0015 = − , and is no longer statistically significant (p-

value=0.97); ii) among the domestic knowledge inputs, only RD is significant at standard levels, with an 

estimated elasticity equal to 0,47 (p-value=1,62e-05), while the human capital stock has a positive effect 

(0,057) but is not significant (p-value=0.98); and ii) the estimated coefficients associated with WRD and WHK 

both have the wrong (negative) sign (-0, 10 and -9,02, respectively), with WHK also being highly significant. 

The above results thus indicate the importance of adopting a flexible specification to highlight policy effects. 

The same result is found, for instance, in Cardot and Musolesi (2020). These estimates also suggest that 

adopting a flexible specification permits more credible and refined results with respect to the effect of 

continuous knowledge inputs, since nonlinearities and thresholds are important features of innovation data. 

Estimating a traditional parametric model would have produced a substantial functional form bias. 

Figure 5 – R&D (a), human capital (b) and RD spillover (c) effects on green inventions: estimated univariate 

smooth functions 
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4.3 Extending the model: interactive policy effects 

4.3.1. Econometric modeling 

Common practices in policy evaluation consist of focusing attention on the mean effect of a policy or imposing 

a homogeneous effect across units and overtime, as we did in the previous section. Adopting model (2) was 

extremely useful because it allowed us to i) conduct a direct comparison with parametric models (see 

subsection 4.2.2) and ii) focus attention on the functional relation between patents and knowledge inputs. 

In this section, we focus on the effect of the policy and specifically search for possible heterogeneous policy 

effects by exploiting the modularity and flexibility of spline modeling. Following Cardot and Musolesi (2020), 

we consider a model in which the effect of the policy is expanded as a nonparametric function of some 

variables, which are selected among the knowledge inputs. Put differently, environmental policy 

nonparametrically interacts with some continuous covariates: in doing so, the discrete policy produces not only 

a neutral shift but also a more general change in the estimated nonparametric functions. In this framework, 

there is a binary-by-continuous interaction (Ruppert et al., 2003) allowing us to obtain two distinct 

nonparametric functions (one for each level of 
itEP ) for each explanatory variable and the (heterogeneous) 

policy effect, which is defined as: 

   | , 1 | , 0it it it it it it itE GK X EP E GK X EP = = − = , 

is consequently a nonparametric function of the continuous knowledge inputs 
itX  and, more specifically, can 

be expressed, given the vector of covariates itX , with the following specification: 

( )
1

p

it j itj

j

m X 
=

= +                                                  (3) 

where ( ) ( , 1) ( , 0),  1,...,j itj j itj it j itj itm X g X EP g X EP j p= = − = =  are unknown smooth functions 

satisfying the identifiability constraints 

( ) 0,  1,..., .itjE m X j p  = =
 

 

As a consequence,   represents the average effect over the whole population, and the functions ( ).jm  

indicate how the mean effect of the policy varies with the knowledge inputs. 

c
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 In principle, equation (3) can be generalized by considering a nonadditive specification by replacing 

(3) with a more general multivariate function 

( )1,...,it it itdm X X = +               (4) 

for 2 d p  . Estimating equation (4) will allow for greater flexibility at the price, because of the curse of 

dimensionality, of less precise estimates. 

The rationale behind such a modelization lies in the presence of absorptive capacity and non-neutral or even 

localized (to some specific input domain) inducement effects of environmental policy. Indeed, we can expect 

that environmental policy is transmitted to technological performance (green inventions, in this case) with a 

significance and strength that depend on the country-specific investments in knowledge-driving factors, which 

become types of ‘innovation endowments’ (see also Jaffe et al. 1995; Jaffe et al. 2002). 

Ex ante, it can be expected that the larger knowledge investments are, the stronger the possible role of policy 

in inducing new inventions. The higher the combination of any R&D/human capital sources, the stronger is 

the sociotechnical system capacity to absorb the effect of the policy, translating this into inventions. Moreover, 

this may happen with possibly complex nonlinear shapes. 

The economic system’s absorptive capacity is the ability to recognize the value of new external ‘information’, 

a policy in this case, assimilate it, and apply it to the ends of invention. Absorptive capacity can be regarded 

as an important factor in both corporate innovation and general competitive advantage. The proposed 

specification is coherent with the evolutionary approach (Dosi, 1982), which stresses that “one-directional 

explanations of the innovative process, and in particular those assuming ‘the market’ as the prime mover, are 

inadequate to explain the emergence of new technological paradigms”. Policies are relevant, as many works 

have shown. This paper tries to scrutinize the extent to which the amount of public and private investments 

such as R&D, human capital and positive externalities such as foreign R&D play a role in determining the 

magnitude of the policy effect. 

4.3.2. Estimation results 

As far as the results are concerned, we adopt a backward selection procedure (Cardot and Musolesi, 2020) to 

select the variables to be considered to fit model (3). This procedure leads us to retain only two significant 

variables in model (3): domestic and foreign R&D (RD and WRD). Using an approximate ANOVA test 

procedure (see Wood, 2017), an additive structure is strongly rejected in favor of a more general model based 

on bivariate regression functions: 

 

( ),it it itm RD WRD = + . 

 

The results indicate that the estimated average effect of the policy is positive, with ˆ 0,15 = , and significant 

in statistical terms (p-value=0.011). Thus, compared to the results in the previous section, allowing for a 

heterogeneous policy effect produces a higher estimated average effect and higher significance level. 

As for the estimated function ( )ˆ ,it itm RD WRD , Figure 6 draws the contour plot of the estimated bivariate 

function ( )ˆ ,it itm RD WRD . It is worth recalling that the contours indicate the varying component of the policy 

effect, i.e., the effect of the policy that varies nonparametrically with RD and WRD, ( )ˆ ,it itm RD WRD , while 

the total estimated effect of the policy is given by 

( )ˆ ˆ0,15 ,it it itm RD WRD = + . 



 
 

Overall, over the whole domain of RD and WRD (Figure 6), there is evidence that the effect of the policy 

nonlinearly and monotonically increases with both domestic and foreign R&D, pointing again to the joint 

relevance of internal and external knowledge for the support of technological development through their joint 

effect with the policy. We can identify two macro regions, which are described below. 

The first macro region corresponds to very low levels of internal/foreign R&D (Figure 7), where 

( )ˆ , 0it itm RD WRD  , and at the very extreme ( )ˆ , 0,5it itm RD WRD − , so that the total effect ˆ
it  is negative 

over part of the analyzed green knowledge generation domain. From an economic viewpoint, this points to a 

kind of coordination failure or insufficient investment in the innovation drivers. At very low levels of these 

knowledge inputs, the costs outweigh the benefits. The absorptive capacity of the system, represented by the 

investments in knowledge, is insufficient to provide an effective framework where invention can arise through 

the inducement effect of the policy. From a statistical point of view, it can also be observed that for low levels 

of internal/foreign R&D, the data are sparse, and the estimates lack precision. 

 

In the second, and most relevant, macro region, we observe ( )ˆ , 0it itm RD WRD  . This region corresponds to 

most of the domain of RD and WRD. Specifically, it can be expected that environmental policies’ effects on 

innovation require a critical amount of core investments in knowledge to exert the dynamic efficiency effects 

that theory predicts (Porter and Esty, 1994; Milliman and Prince, 1989; Requate and Unhold, 2003), and 

indeed, for average levels of internal/foreign R&D, we find that ( )ˆ , 0it itm RD WRD  so that ˆ 0,15it  

(Figure 8). 

 

Then, by increasing the level of RD/WRD, we find that threshold effects again matter and are likely connected 

to some complementarity with the underlying innovation function (Antonioli et al. 2013; Charlot et al, 2015). 

In fact, for high levels of internal/foreign R&D, the estimated function ( )ˆ ,it itm RD WRD turns positive and 

monotonically increases with both variables, up to a maximum at which ( )ˆ , 1,5it itm RD WRD  for extremely 

high levels, so that in that region of the domain, ˆ0,15 1,65it   (Figure 9). 

Two main highlights of econometric and economic relevance arise. First, the results are clear-cut in showing 

how the effect of the policy nonlinearly and monotonically increases with both domestic and foreign R&D, 

suggesting, more specifically, that a critical mass of these inputs is necessary to make the policy effective. The 

proposed semiparametric model reveals heterogeneous policy effects, which operate through R&D layers, 

signaling that the effects of environmental policy on knowledge are significantly mediated by country 

investments in R&D. Domestic and foreign R&D act as knowledge absorptive capacity factors and enhance 

the effectiveness of environmental policy effectiveness: the denser the market and institutional environment is 

in R&D, the more effective the air pollution policy is in driving green patents. Second, this evidence suggests 

that green patenting dynamics conceptually connect to two main relevant dimensions of a GKPF: (i) the 

complementarity of various invention drivers, here domestic and foreign R&D, and (ii) the crucial role of R&D 

spillovers, mediated by geographic distance, in directly contributing to green knowledge generation and 

allowing the policy to become effective. Further studies may consider alternative transmission channels such 

as trade, technological proximity, language or genetic distance. 

 

 

 

 



 
 

Figure 6 – Heterogeneous policy effect: contour plot of ( )ˆ ,it itm RD WRD  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 7– Heterogeneous policy effect: contour plot of ( )ˆ ,it itm RD WRD for low levels of internal/foreign R&D, 

( )ˆ , 0it itm RD WRD   

 

 

 



 
 

Figure 8 – Heterogeneous policy effect: contour plot of ( )ˆ ,it itm RD WRD for average levels of internal/foreign 

R&D, ( )ˆ , 0it itm RD WRD , so that ˆ 0,15it  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 9 – Heterogeneous policy effect: contour plot of ( )ˆ ,it itm RD WRD for high levels of internal/foreign 

R&D, ( )ˆ , 0it itm RD WRD   

 

4. Conclusions 

The paper takes a macroeconometric long-run perspective to examine green knowledge production functions. 

The main methodological issues the investigation addresses are the possible functional form bias and 

correlated unobservable factor bias that may arise when adopting standard parametric fixed effects 

approaches. As a consequence, the work has considered semiparametric panel data specifications with 

interactive fixed effects. The modeling framework that the paper developed also aims at enhancing the 

understanding of long-run innovation phenomena and the setting of flexible and sound policy assessment tools. 

In this regard, we consider a flexible specification that allows us to relax the hypothesis of homogeneous policy 

effects, considering effects that nonparametrically interact with some knowledge inputs, such as research 

activity. 

A first relevant result is that the effects of R&D, human capital and foreign R&D are characterized by relevant 

nonlinearities and thresholds. The specifications that emerge from the model selection reinforce the idea that 

nonlinearities and thresholds are relevant components of knowledge creation in the specific case of green 

innovation activities. 

Another important result is that environmental policies have significantly driven green inventions since the 

early 1980s. The effect is significant from both an economic and a statistical point of view. It is specifically 

found that to fully unveil the significance and strength of environmental policy, allowing for 

heterogeneous/interactive policy effects is necessary. In fact, the consideration of a model in which the effect 

of policy is expanded as a nonparametric function of some knowledge inputs indicates that the estimated 

induced policy effect, which is mediated by domestic and foreign R&D, is on average positive and highly 

significant. It is also found that such an effect nonlinearly increases with both domestic and foreign R&D and 

that a critical mass of both variables is necessary to make the policy effective. Threshold effects are again 



 
 

relevant, as at extremely low levels of R&D activity, environmental policy may even produce a negative effect 

on green patenting. The emergence of a substantial complementarity between innovation policies and R&D 

activity connects a methodological issue (the heterogeneous policy effect) with a real-world policy issue (the 

necessary R&D investments for green technological development). The economic meaning is that those 

countries with excessively low levels of domestic and foreign R&D are not providing a favorable setting for 

substantial policy inducement effects to appear. 

In summary, the proposed semiparametric framework offers evidence on the existence of relevant 

nonlinearities, threshold effects and complementarities. It points out the need for a critical mass of knowledge 

inputs to sustain technological development through a direct effect of these inputs on knowledge creation but 

also via an induced policy effect occurring through R&D activity. 

Further analyses could consider extending the coverage to other policy domains, introducing non-binary policy 

index structures, comparing the KPF for green and non-green inventions, and considering other spillover 

transmission channels. 
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